

**Themed Section: Secretin Family (Class B) G Protein-Coupled Receptors –
from Molecular to Clinical Perspectives****REVIEW**

Conformational switches in the VPAC₁ receptor

Ingrid Langer

IRIBHM, School of Medicine, Université Libre de Bruxelles, Brussels, Belgium

CorrespondenceIngrid Langer, IRIBHM, ULB, 808
route de Lennik CP 602, B-1070
Brussels, Belgium. E-mail:
ilanger@ulb.ac.be**Keywords**GPCR; VPAC receptor;
site-directed mutagenesis;
signalling**Received**

15 April 2011

Revised

11 July 2011

Accepted

18 July 2011

The vasoactive intestinal peptide receptor 1 (VPAC₁) belongs to family B of GPCRs and is activated upon binding of vasoactive intestinal peptide (VIP) and pituitary AC-activating polypeptide neuropeptides. Widely distributed throughout body, VPAC₁ plays important regulatory roles in human physiology and physiopathology. Like most members of the GPCR-B family, VPAC₁ receptor is predicted to follow the actual paradigm of a common 'two-domain' model of natural ligand action. However the precise structural basis for ligand binding, receptor activation and signal transduction are still incompletely understood due in part to the absence of X-ray crystal structure of the whole receptor and to significant structural differences with the most extensively studied family of receptor, the GPCR-A/rhodopsin family. Here, we try to summarize the current knowledge of the molecular mechanisms involved in VPAC₁ receptor activation and signal transduction. This includes search for amino acids involved in the two-step process of VIP binding, in the stabilization of VPAC₁ inactive and active conformations, and in binding and activation of G proteins.

LINKED ARTICLES

This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit <http://dx.doi.org/10.1111/bph.2012.166.issue-1>

Abbreviations

IC, intracellular loop; PACAP, pituitary AC-activating polypeptide; TM, transmembrane; VIP, Vasoactive Intestinal Peptide

The vasoactive intestinal peptide receptor 1 (VPAC₁) is a member of the family B of GPCRs, which includes VPAC₂, pituitary AC-activating polypeptide receptor 1 (PAC₁), secretin, glucagon, glucagon-like peptide (GLP) 1 and 2, calcitonin, gastric inhibitory polypeptide (GIP), corticotropin-releasing factor (CRF) 1 and 2, and parathyroid hormone (PTH) receptors. The endogenous ligands of VPAC₁ receptor are vasoactive intestinal polypeptide (VIP) and pituitary AC-activating polypeptide (PACAP), two neuropeptides that contribute to the regulation of intestinal motility and secretion, exocrine and endocrine secretions, and to homeostasis of the immune system (Dickson and Finlayson, 2009). Like all members of the GPCR-B family, VPAC₁ receptor is preferentially coupled to G_αs protein that stimulates AC activity and induces cyclic AMP increase, although a coupling to the PLC and the calcium/inositol trisphosphate pathway through either G_αq or G_αi is also effective (Dickson and Finlayson, 2009). VPAC₁ receptor was also reported to interact with receptor activity-modifying proteins (RAMP), in particular

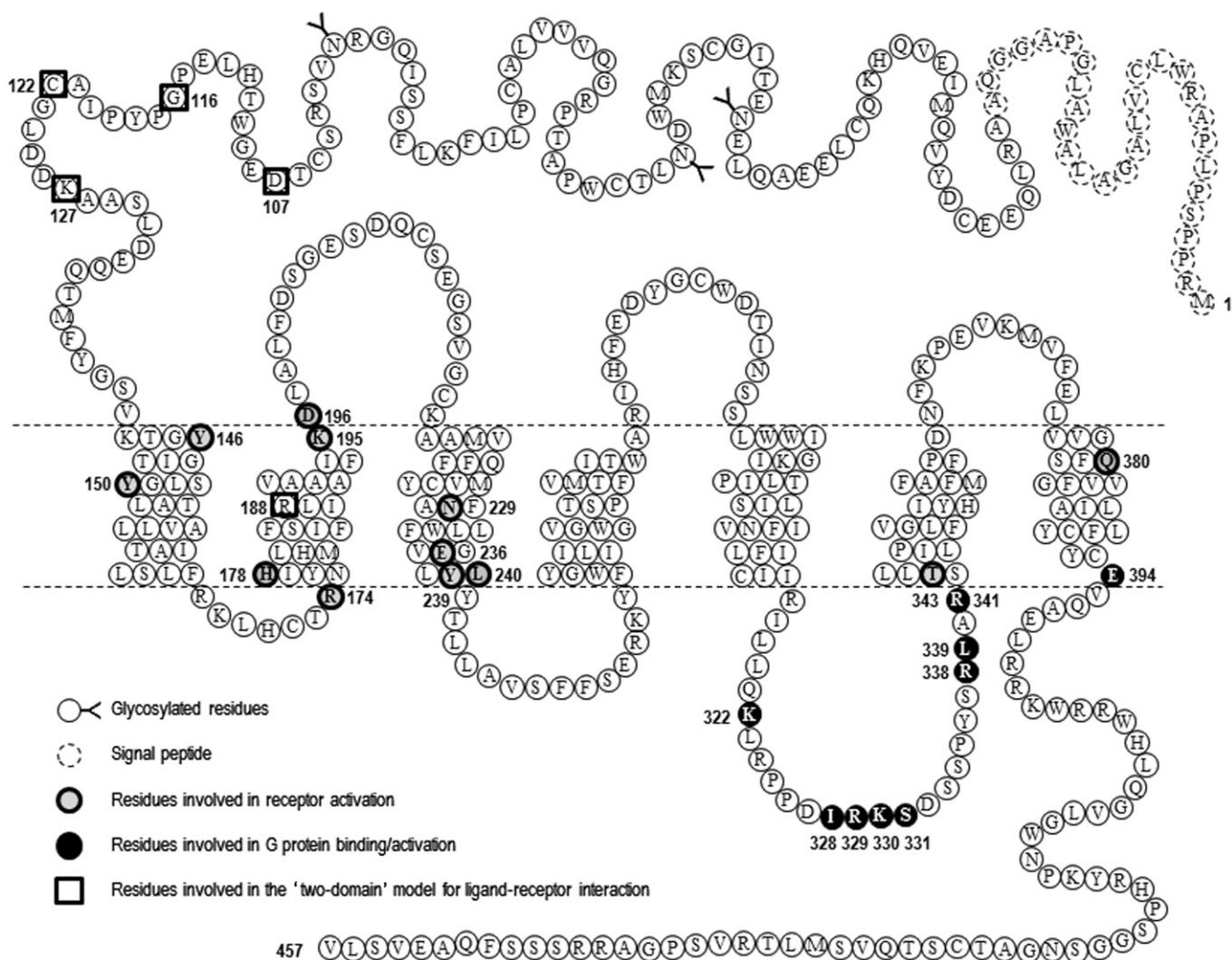
RAMP2, inducing a significant increase of agonist-induced inositol trisphosphate production without modifying cAMP stimulation (Christopoulos *et al.*, 2003). Like most GPCRs, VPAC₁ receptor also forms constitutive homodimers as well as hetero-oligomers with VPAC₂ receptors, as demonstrated using biophysical methods (Harikumar *et al.*, 2006), but the physiological consequences of those oligomerizations remain to be elucidated. Indeed, pharmacological studies performed on CHO cells co-expressing VPAC₁ and VPAC₂ receptors did not identify any differences in VIP or selective agonist affinities or potencies. Similarly, VIP receptors co-expression did not modify receptor internalization and trafficking patterns following agonist exposure (Langer *et al.*, 2006).

Major advances in structural biology of GPCRs came a few years ago from solving the first X-ray crystal structures of rhodopsin and ligand-activated GPCR-A family members bound to an antagonist and an agonist (Palczewski *et al.*, 2000; Cherezov *et al.*, 2007; Rasmussen *et al.*, 2007; Jaakola *et al.*, 2008; Park *et al.*, 2008; Scheerer *et al.*, 2008; Warne

et al., 2008; Rosenbaum *et al.*, 2011; Xu *et al.*, 2011). However, the mechanisms regulating the GPCR-B family signal transduction are less precisely understood, since no X-ray crystal structure of the whole receptor is available, and conserved motifs of the GPCR-A family (E/DRY at TM3, NPXXY at TM7) are absent in the GPCR-B family. They also differ from family A members by their larger binding site located both on N-terminal extracellular domain and transmembrane (TM) helices. Although recent studies have solved the structure of the N-terminus of several family B receptors (CRF, PTH, PAC₁, GIP, GLP-1, calcitonin receptor-like/RAMP1) and clarified their role in ligand binding (Grace *et al.*, 2007; Parthier *et al.*, 2007; Sun *et al.*, 2007; Pioszak and Xu, 2008; Runge *et al.*, 2008; ter Haar *et al.*, 2010), information on the events that follow ligand binding only came from site-directed mutagenesis and pharmacological studies. These will be developed in this review, trying to highlight the current knowledge of the molecular switches driving VPAC₁ from inactive to active conformation and subsequent G protein binding and activation.

The 'two-domain' model for ligand-receptor interaction

The commonly accepted model for agonist action of family B GPCRs suggests that the N-terminal domain of the receptor is the principal binding site for the central and the C-terminal regions of the natural ligand and ensures correct ligand positioning, whereas binding of residues 1–6 of the ligand to the extracellular loops and TM helices drives the receptor activation (Hoare, 2005). Following agonist binding, subsequent conformational changes are expected within the TM domains of the receptor causing key sequences located in the intracellular loops to be exposed and to interact with the G proteins. More recently, it has also been proposed that a helix N-capping motif, identified in the N-terminus of all GPCR-B family ligands and stabilizing their helical conformation, was probably formed upon receptor binding and could also constitute a key element in receptor activation (Neumann *et al.*, 2008).


A large number of site-directed mutagenesis studies suggests that VIP–VPAC₁ receptor interaction also follows this paradigm and pointed out that the N-terminus of the VPAC₁ receptor plays a key role in agonist binding (Laburthe *et al.*, 2007). Solano *et al.* (2001) also found, using reciprocal substitution mutants in both ligand and receptor, that D³ of VIP forms a salt bridge with R¹⁸⁸ of the VPAC₁ receptor and that this interaction was necessary for receptor activation. More recently, photoaffinity experiments performed by the group of Couvineau and Laburthe showed that benzophenone-residues in position 6, 22, 24 and 28 of VIP are in direct contact with D¹⁰⁷, G¹¹⁶, C¹²² and K¹²⁷ respectively, four residues located in the N-terminus of VPAC₁ receptor (Couvineau *et al.*, 2010). Interestingly, they also observed, using a VIP and a VPAC₁ antagonist affinity probe in position 0, that the N-terminal domain of VIP (agonist) and of the VPAC₁ antagonist recognizes two different microdomains in the N-terminus of the VPAC₁ receptor, while the central and the C-terminal regions of these ligands seem to share the same binding site (Ceraudo *et al.*, 2008a) (Figures 1 and 2).

Molecular mechanisms involved in VPAC₁ receptor activation

As mentioned before, the recent solving of the X-ray crystal structures of several GPCR-A family members provides clues to the TM helix rearrangements that result from agonist binding and subsequent receptor activation. These include the disruption of an ionic interaction between the cytoplasmic face of TM3 (E/DRY motif) and TM6 (E residue) maintaining the receptor preferentially in a ground inactive conformation in absence of agonist (ionic lock), a 'rotamer toggle switch' (modulation of the helix conformation around a proline-kink) in TM6 causing key sequences to be exposed to cytoplasmic binding partners and a conformational change of Y residue of the NPXXY motif located in TM7 stabilizing the active conformation (Rosenbaum *et al.*, 2009; Rosenbaum *et al.*, 2011). In the absence of X-ray crystal structure of the VPAC₁ receptor, only model structures have been reported, which used as template the structures of the N-terminal domain of the CRF 2 β receptor (Ceraudo *et al.*, 2008b) or structures of family A GPCRs for the TM domains (Conner *et al.*, 2005; Chugunov *et al.*, 2010). However, the low sequence identity between the VPAC₁ receptor sequence and the templates used for homology modelling prevents direct transposition of molecular switches that drive GPCR-A members activation.

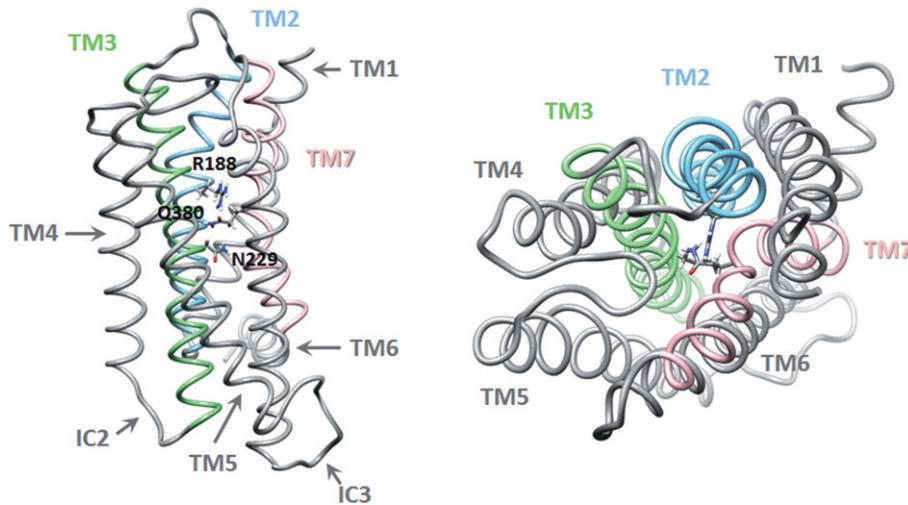
As all members of GPCR-B family, VPAC₁ receptor lacks the E/DRY sequence. On the basis of subtle changes observed when Y²³⁹ and L²⁴⁰, located in TM3 of VPAC₁, were substituted with alanine it was proposed that this YL sequence was equivalent to the E/DRY motif of GPCR-A family (Tams *et al.*, 2001). Another model based on a three-dimensional analysis of the GLP-1 receptor proposed that an E/DRY motif could be formed by three non-adjacent residues consisting in R¹⁷⁴ in the cytoplasmic end of TM2, E²³⁶ and Y²³⁹ in the distal part of TM3 of VPAC₁ (Frimurer and Bywater, 1999). But in our hands Y²³⁹A, L²⁴⁰A, E²³⁶A, Y²³⁹A and R¹⁷⁴A mutants were undistinguishable from the wild-type receptor (Nachtergaele *et al.*, 2006). One possible explanation for the discrepancy can be the fact that Tams *et al.* (2000) studied cyclic AMP measurements in intact cells a more sensitive model than the AC assay on membrane used in our study. Nevertheless, even if the YL motif of GPCR-B family and E/DRY motif of GPCR-A family have the same location, they certainly do not have the same importance for receptor activation (Figure 1).

More recently, by combining pharmacological and *in silico* approaches, we have identified a network of interactions between residues located in helices 2, 3 and 7 of the VPAC₁ receptor, which are involved in the stabilization of the receptor in the absence of agonist and in early steps of receptor activation. We proposed that, in the absence of ligand, interaction between R¹⁸⁸, N²²⁹ and Q³⁸⁰ ties helices 2, 3 and 7 together (Figure 3). Upon VIP binding, the interaction between R¹⁸⁸ and N²²⁹ is broken, and a stronger interaction (salt bridge) is established between R¹⁸⁸ and the D³ side chain of VIP. TM2 and, probably, other helices undergo conformational changes causing key sequences located in intracellular loops to be exposed and to interact with the G proteins. In the meantime, the interaction network involving N²²⁹ and Q³⁸⁰ maintains TM7 in a conformation necessary for proper

Figure 1

Snake plot representation of VPAC₁ receptor. Amino acid sequence of human VPAC₁ receptor, the position of signal peptide, glycosylated residues and amino acids important for VIP binding, receptor activation and G protein coupling are also labelled.

HSDAVFTDNYTRLRKQMAVK**K**YLNSILN


Figure 2

Amino acid sequence of VIP. Amino acids that were experimentally mapped into the VPAC₁ receptor binding site are in bold and those involved in the helical N-cap are underlined.

activation of G proteins. The three-dimensional model also suggested that Q³⁸⁰ could function as a floating 'ferry-boat', switching between R¹⁸⁸ and N²²⁹ residues' side-chains, hence contributing to signal transduction propagation and activation of G proteins (Chugunov *et al.*, 2010). Likewise, other studies have pointed out the importance of TM2 and TM7 in G protein activation. Indeed, the mutation into arginine of H¹⁷⁸ located at the bottom of TM2 led to a constitutively activated VPAC₁ receptor (Gaudin *et al.*, 1998). On the other hand, it has also been shown that E³⁹⁴ located at the junction

of TM7 and the C-terminus of VPAC₁ was important for VIP-induced cAMP production but was not directly involved in G_{αs} binding (Couvineau *et al.*, 2003; Langer and Robberecht, 2005). Moreover, we found that phosphorylation levels and internalization of N²²⁹A and N²²⁹Q VPAC₁ receptors (mutants that failed to generate the G protein active state and, therefore, to activate AC properly and to stimulate intracellular calcium increase but with a preserved affinity for VIP and sensitivity to GTP) were comparable with that of the wild-type receptor (Nachtergael *et al.*, 2006). These later results thus suggest that receptor conformation necessary for activation and regulatory mechanisms, such as desensitization and internalization, could be different.

When considering other site-directed mutagenesis studies, it is likely that a complex and larger network of interaction between TM helices must be considered for stabilization of VPAC₁ inactive and active conformations (Figure 1). Indeed, mutation of T³⁴³, located at the junction of

Figure 3

Three-dimensional model of the TM domains of the VPAC₁ receptor. Lateral (left) and top (right) view of a working model of human VPAC₁ receptor, TM and residues identified as important for receptor stabilization are also labelled. Details regarding modelling procedure are described in Chugunov *et al.* (2010).

the third intracellular loop and TM6 of VPAC₁, into lysine, proline or alanine also led to a constitutively activated receptor (Gaudin *et al.*, 1999). Another study showed that Y¹⁴⁶ and Y¹⁵⁰, located in TM1 of VPAC₁, do not interact directly with VIP but stabilize the correct active receptor conformation (Perret *et al.*, 2002). Similarly, we observed that K¹⁹⁵ and D¹⁹⁶ located at junction of TM2 and the first extracellular loop were essential for VPAC₁ activation but were not directly involved in VIP recognition (Langer *et al.*, 2003).

How all these residues cooperate to propagate signal transduction after VIP binding remains to be elucidated and would require a model of the activated receptor in complex with VIP. Particularly the two N-terminal residues of VIP, H¹ and S², are likely to affect, directly or indirectly, the interaction network surrounding N²²⁹ and Q³⁸⁰. Of interest, so far as all residues that were identified as important for VPAC₁ receptor activation are highly conserved among GPCR-B family members, they may, therefore, be involved in a binding and activation mechanism that is common to the whole family.

Molecular mechanisms involved in VPAC₁/G protein binding and activation

The α subunit of heterotrimeric G proteins has a central role in interaction with both the receptor and the effectors. Several studies have shown that the C-terminal part of α subunit can directly bind to the receptor and is involved in the coupling specificity (Conklin *et al.*, 1996). The current model of GPCR activation, based on the study of family A GPCRs, proposes that when the receptor switches to its active conformation, TM movements are accompanied by intracellular loops switches leading to exposure of the G protein-binding pocket to cytosol and efficient binding to G protein.

However, the diversity of sequences and loop sizes, as well as their flexibility, has made difficult the identification of a specific set of residues defining the coupling profile.

For the VPAC₁ receptor, α binding domains are mainly located in the third intracellular loop (IC3), which contains subdomains dedicated to the recognition of the different α subunits (Figure 1). K³²² located in proximal part of IC3 and E³⁹⁴ located at the junction of TM7 and the C-terminal tail are required for AC activation but not for the coupling to the inositol trisphosphate/calcium pathway. The former being involved in direct interaction with α s (G protein binding), as demonstrated by a reduced sensitivity to GTP, while E³⁹⁴ triggering switch of α s from inactive to active state (G protein activation) (Couvineau *et al.*, 2003; Langer and Robberecht, 2005). Similarly, two other sequences located in IC3 have been identified as important for VIP-induced intracellular calcium increase but not cAMP production. A small sequence, I³²⁸-R³²⁹-K³³⁰-S³³¹, located in the central part of IC3 is involved in efficient binding of VPAC₁ to α o and α q (Langer *et al.*, 2002), while R³³⁸ and L³³⁹, located at the distal part of IC3, mediate interaction of VPAC₁ with α o (Langer and Robberecht, 2005). Combining mutations in the proximal and distal part of IC3 together with mutation of E³⁹⁴ gave rise to a completely inactive VPAC₁ receptor with respect to AC activation and intracellular calcium increase.

Among the different members of the GPCR-B family, proximal and distal domains of IC3 share conserved sequences that could therefore represent common G protein binding motifs. In line with this hypothesis, studies performed on other members of the GPCR-B family identified the proximal domain of IC3 as essential for AC activation but the amino acids involved may differ and additional conserved sequences located in other intracellular regions of the receptor may also be necessary as seen for glucagon (IC2) (Cypess *et al.*, 1999) and calcitonin gene-related peptide receptors (R¹⁵¹ located in IC1) (Conner *et al.*, 2006). The junc-

tions of IC3 loop are predicted to be α -helical and it is assumed that the correct positioning of charged amino acids plays an important role in G protein interaction. However, other data suggest that lipophilic and aromatic residues are also important for G protein interaction. It is possible that IC3 loop junctions activate G protein directly or that they may serve as regions that control the loop conformation. As mutations may change both direct interaction site and secondary structure, it is difficult to define more precisely the mechanisms involved in IC3 loop/G protein interaction. Again a structure or a model of the activated VPAC₁ receptor in complex with VIP could help to answer this question.

Conclusion

Identification of the precise molecular mechanisms that drive GPCRs from inactive to active state represents a major focus in functional genomics and drug development research with the ultimate aim of designing molecules able to stabilize one of these states. VIP and PACAP receptors have been identified as potential therapeutic targets for metabolic, inflammatory and neuronal diseases (Dickson and Finlayson, 2009). But the use of their natural ligands is limited by their lack of specificity (PACAP binds with high affinity VPAC₁, VPAC₂ and PAC₁ receptors while VIP recognizes both VPAC₁ and VPAC₂ receptors), their poor oral bioavailability (VIP and PACAP are 27- to 38-amino acid peptides) and their short half-life. Therefore, the development of non-peptide small molecules or specific stabilized peptidic ligands is of high interest. Up to now, only two small molecules antagonists of VPAC₂ receptor have been identified by high-throughput screening (Chu *et al.*, 2010), further investigation and new insight toward elucidation of VIP receptors activation mechanism would allow the rational design of potential new drugs.

Acknowledgements

This work was supported by a grant from the Brussels Region, Belgium (TheraVIP project).

Conflict of interest

The author has no conflicts of interest and no financial links with manufacturers of reagents relevant to this work.

References

Ceraudo E, Murail S, Tan YV, Lacapere JJ, Neumann JM, Couvineau A *et al.* (2008a). The vasoactive intestinal peptide (VIP) alpha-Helix up to C terminus interacts with the N-terminal ectodomain of the human VIP/Pituitary adenylate cyclase-activating peptide 1 receptor: photoaffinity, molecular modeling, and dynamics. *Mol Endocrinol* 22: 147–155.

Ceraudo E, Tan YV, Nicole P, Couvineau A, Laburthe M (2008b). The N-terminal parts of VIP and antagonist PG97-269 physically interact with different regions of the human VPAC1 receptor. *J Mol Neurosci* 36: 245–248.

Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS *et al.* (2007). High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. *Science* 318: 1258–1265.

Christopoulos A, Christopoulos G, Morfis M, Udwawela M, Laburthe M, Couvineau A *et al.* (2003). Novel receptor partners and function of receptor activity-modifying proteins. *J Biol Chem* 278: 3293–3297.

Chu A, Caldwell JS, Chen YA (2010). Identification and characterization of a small molecule antagonist of human VPAC(2) receptor. *Mol Pharmacol* 77: 95–101.

Chugunov AO, Simms J, Poyner DR, Dehouck Y, Rooman M, Gilis D *et al.* (2010). Evidence that interaction between conserved residues in transmembrane helices 2, 3, and 7 are crucial for human VPAC1 receptor activation. *Mol Pharmacol* 78: 394–401.

Conklin BR, Herzmark P, Ishida S, Voyno-Yasenetskaya TA, Sun Y, Farfel Z *et al.* (1996). Carboxyl-terminal mutations of Gq alpha and Gs alpha that alter the fidelity of receptor activation. *Mol Pharmacol* 50: 885–890.

Conner AC, Hay DL, Simms J, Howitt SG, Schindler M, Smith DM *et al.* (2005). A key role for transmembrane prolines in calcitonin receptor-like receptor agonist binding and signalling: implications for family B G-protein-coupled receptors. *Mol Pharmacol* 67: 20–31.

Conner AC, Simms J, Conner MT, Wootten DL, Wheatley M, Poyner DR (2006). Diverse functional motifs within the three intracellular loops of the CGRP1 receptor. *Biochemistry* 45: 12976–12985.

Couvineau A, Lacapere JJ, Tan YV, Rouyer-Fessard C, Nicole P, Laburthe M (2003). Identification of cytoplasmic domains of hVPAC1 receptor required for activation of adenylyl cyclase. Crucial role of two charged amino acids strictly conserved in class II G protein-coupled receptors. *J Biol Chem* 278: 24759–24766.

Couvineau A, Ceraudo E, Tan YV, Laburthe M (2010). VPAC1 receptor binding site: contribution of photoaffinity labeling approach. *Neuropeptides* 44: 127–132.

Cypess AM, Unson CG, Wu CR, Sakmar TP (1999). Two cytoplasmic loops of the glucagon receptor are required to elevate cAMP or intracellular calcium. *J Biol Chem* 274: 19455–19464.

Dickson L, Finlayson K (2009). VPAC and PAC receptors: from ligands to function. *Pharmacol Ther* 121: 294–316.

Frimurer TM, Bywater RP (1999). Structure of the integral membrane domain of the GLP1 receptor. *Proteins* 35: 375–386.

Gaudin P, Maoret JJ, Couvineau A, Rouyer-Fessard C, Laburthe M (1998). Constitutive activation of the human vasoactive intestinal peptide 1 receptor, a member of the new class II family of G protein-coupled receptors. *J Biol Chem* 273: 4990–4996.

Gaudin P, Couvineau A, Rouyer-Fessard C, Maoret JJ, Laburthe M (1999). The human vasoactive intestinal Peptide/Pituitary adenylate cyclase activating peptide receptor 1 (VPAC1): constitutive activation by mutations at threonine 343. *Biochem Biophys Res Commun* 254: 15–20.

Grace CR, Perrin MH, Gulyas J, Digruccio MR, Cantle JP, Rivier JE *et al.* (2007). Structure of the N-terminal domain of a type B1 G protein-coupled receptor in complex with a peptide ligand. *Proc Natl Acad Sci USA* 104: 4858–4863.

ter Haar E, Koth CM, Abdul-Manan N, Swenson L, Coll JT, Lippke JA *et al.* (2010). Crystal structure of the ectodomain complex of the CGRP receptor, a class-B GPCR, reveals the site of drug antagonism. *Structure* 18: 1083–1093.

Harikumar KG, Morfis MM, Lisenbee CS, Sexton PM, Miller LJ (2006). Constitutive formation of oligomeric complexes between family B G protein-coupled vasoactive intestinal polypeptide and secretin receptors. *Mol Pharmacol* 69: 363–373.

Hoare SR (2005). Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. *Drug Discov Today* 10: 417–427.

Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR *et al.* (2008). The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. *Science* 322: 1211–1217.

Laburthe M, Couvineau A, Tan V (2007). Class II G protein-coupled receptors for VIP and PACAP: structure, models of activation and pharmacology. *Peptides* 28: 1631–1639.

Langer I, Robberecht P (2005). Mutations in the carboxy-terminus of the third intracellular loop of the human recombinant VPAC1 receptor impair VIP-stimulated $[Ca^{2+}]_i$ increase but not adenylyl cyclase stimulation. *Cell Signal* 17: 17–24.

Langer I, Vertongen P, Perret J, Waelbroeck M, Robberecht P (2002). A small sequence in the third intracellular loop of the VPAC(1) receptor is responsible for its efficient coupling to the calcium effector. *Mol Endocrinol* 16: 1089–1096.

Langer I, Vertongen P, Perret J, Waelbroeck M, Robberecht P (2003). Lysine 195 and aspartate 196 in the first extracellular loop of the VPAC1 receptor are essential for high affinity binding of agonists but not of antagonists. *Neuropharmacology* 44: 125–131.

Langer I, Gaspard N, Robberecht P (2006). Pharmacological properties of Chinese hamster ovary cells coexpressing two vasoactive intestinal peptide receptors (hVPAC1 and hVPAC2). *Br J Pharmacol* 148: 1051–1059.

Nachtergael I, Gaspard N, Langlet C, Robberecht P, Langer I (2006). Asn229 in the third helix of VPAC1 receptor is essential for receptor activation but not for receptor phosphorylation and internalization: comparison with Asn216 in VPAC2 receptor. *Cell Signal* 18: 2121–2130.

Neumann JM, Couvineau A, Murail S, Lacapere JJ, Jamin N, Laburthe M (2008). Class-B GPCR activation: is ligand helix-capping the key? *Trends Biochem Sci* 33: 314–319.

Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA *et al.* (2000). Crystal structure of rhodopsin: a G protein-coupled receptor. *Science* 289: 739–745.

Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008). Crystal structure of the ligand-free G-protein-coupled receptor opsin. *Nature* 454: 183–187.

Parthier C, Kleinschmidt M, Neumann P, Rudolph R, Manhart S, Schlenzig D *et al.* (2007). Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor. *Proc Natl Acad Sci USA* 104: 13942–13947.

Perret J, Vertongen P, Solano RM, Langer I, Cnudde J, Robberecht P *et al.* (2002). Two tyrosine residues in the first transmembrane helix of the human vasoactive intestinal peptide receptors play a role in supporting the active conformation. *Br J Pharmacol* 136: 1042–1048.

Pioszak AA, Xu HE (2008). Molecular recognition of parathyroid hormone by its G protein-coupled receptor. *Proc Natl Acad Sci USA* 105: 5034–5039.

Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC *et al.* (2007). Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. *Nature* 450: 383–387.

Rosenbaum DM, Rasmussen SG, Kobilka BK (2009). The structure and function of G-protein-coupled receptors. *Nature* 459: 356–363.

Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH *et al.* (2011). Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. *Nature* 469: 236–240.

Runge S, Thøgersen H, Madsen K, Lau J, Rudolph R (2008). Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. *J Biol Chem* 283: 11340–11347.

Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW *et al.* (2008). Crystal structure of opsin in its G-protein-interacting conformation. *Nature* 455: 497–502.

Solano RM, Langer I, Perret J, Vertongen P, Juarranz MG, Robberecht P *et al.* (2001). Two basic residues of the h-VPAC1 receptor second transmembrane helix are essential for ligand binding and signal transduction. *J Biol Chem* 276: 1084–1088.

Sun C, Song D, Davis-Taber RA, Barrett LW, Scott VE, Richardson PL *et al.* (2007). Solution structure and mutational analysis of pituitary adenylate cyclase-activating polypeptide binding to the extracellular domain of PAC1-RS. *Proc Natl Acad Sci USA* 104: 7875–7880.

Tams JW, Knudsen SM, Fahrenkrug J (2001). Characterization of a G protein coupling 'YL' motif of the human VPAC1 receptor, equivalent to the first two amino acids in the 'DRY' motif of the rhodopsin family. *J Mol Neurosci* 17: 325–330.

Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R *et al.* (2008). Structure of a beta1-adrenergic G-protein-coupled receptor. *Nature* 454: 486–491.

Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG *et al.* (2011). Structure of an agonist-bound human A2A adenosine receptor. *Science* 332: 322–327.