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The vasoactive intestinal peptide receptor 1 (VPAC;) belongs to family B of GPCRs and is activated upon binding of vasoactive
intestinal peptide (VIP) and pituitary AC-activating polypeptide neuropeptides. Widely distributed throughout body, VPAC,
plays important regulatory roles in human physiology and physiopathology. Like most members of the GPCR-B family, VPAC;
receptor is predicted to follow the actual paradigm of a common ‘two-domain’ model of natural ligand action. However the
precise structural basis for ligand binding, receptor activation and signal transduction are still incompletely understood due in
part to the absence of X-ray crystal structure of the whole receptor and to significant structural differences with the most
extensively studied family of receptor, the GPCR-A/rhodopsin family. Here, we try to summarize the current knowledge of the
molecular mechanisms involved in VPAC; receptor activation and signal transduction. This includes search for amino acids

involved in the two-step process of VIP binding, in the stabilization of VPAC; inactive and active conformations, and in

binding and activation of G proteins.
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The vasoactive intestinal peptide receptor 1 (VPAC,) is a
member of the family B of GPCRs, which includes VPAC,,
pituitary AC-activating polypeptide receptor 1 (PAC)),
secretin, glucagon, glucagon-like peptide (GLP) 1 and 2, cal-
citonin, gastric inhibitory polypeptide (GIP), corticotropin-
releasing factor (CRF) 1 and 2, and parathyroid hormone
(PTH) receptors. The endogenous ligands of VPAC, receptor
are vasoactive intestinal polypeptide (VIP) and pituitary
AC-activating polypeptide (PACAP), two neuropeptides that
contribute to the regulation of intestinal motility and secre-
tion, exocrine and endocrine secretions, and to homeostasis
of the immune system (Dickson and Finlayson, 2009). Like all
members of the GPCR-B family, VPAC, receptor is preferen-
tially coupled to Gass protein that stimulates AC activity and
induces cyclic AMP increase, although a coupling to the PLC
and the calcium/inositol trisphosphate pathway through
either Gogq or Gai is also effective (Dickson and Finlayson,
2009). VPAC, receptor was also reported to interact with
receptor activity-modifying proteins (RAMP), in particular

RAMP2, inducing a significant increase of agonist-induced
inositol trisphosphate production without modifying cAMP
stimulation (Christopoulos et al., 2003). Like most GPCRs,
VPAC, receptor also forms constitutive homodimers as well as
hetero-oligomers with VPAC, receptors, as demonstrated
using biophysical methods (Harikumar et al., 2006), but the
physiological consequences of those oligomerizations remain
to be elucidated. Indeed, pharmacological studies performed
on CHO cells co-expressing VPAC, and VPAC, receptors did
not identify any differences in VIP or selective agonist affini-
ties or potencies. Similarly, VIP receptors co-expression did
not modify receptor internalization and trafficking patterns
following agonist exposure (Langer et al., 2006).

Major advances in structural biology of GPCRs came a few
years ago from solving the first X-ray crystal structures of
rhodopsin and ligand-activated GPCR-A family members
bound to an antagonist and an agonist (Palczewski et al.,
2000; Cherezov et al., 2007; Rasmussen et al., 2007; Jaakola
et al.,, 2008; Park et al., 2008; Scheerer et al., 2008; Warne
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etal., 2008; Rosenbaum etal., 2011; Xu etal., 2011).
However, the mechanisms regulating the GPCR-B family
signal transduction are less precisely understood, since no
X-ray crystal structure of the whole receptor is available, and
conserved motifs of the GPCR-A family (E/DRY at TM3,
NPXXY at TM7) are absent in the GPCR-B family. They also
differ from family A members by their larger binding site
located both on N-terminal extracellular domain and trans-
membrane (TM) helices. Although recent studies have solved
the structure of the N-terminus of several family B receptors
(CRF, PTH, PAC;, GIP, GLP-1, calcitonin receptor-like/RAMP1)
and clarified their role in ligand binding (Grace et al., 2007;
Parthier et al., 2007; Sun et al., 2007; Pioszak and Xu, 2008;
Runge et al., 2008; ter Haar et al., 2010), information on the
events that follow ligand binding only came from site-
directed mutagenesis and pharmacological studies. These will
be developed in this review, trying to highlight the current
knowledge of the molecular switches driving VPAC; from
inactive to active conformation and subsequent G protein
binding and activation.

The ‘two-domain’ model for
ligand-receptor interaction

The commonly accepted model for agonist action of family B
GPCRs suggests that the N-terminal domain of the receptor is
the principal binding site for the central and the C-terminal
regions of the natural ligand and ensures correct ligand posi-
tioning, whereas binding of residues 1-6 of the ligand to the
extracellular loops and TM helices drives the receptor activa-
tion (Hoare, 2005). Following agonist binding, subsequent
conformational changes are expected within the TM domains
of the receptor causing key sequences located in the intracel-
lular loops to be exposed and to interact with the G proteins.
More recently, it has also been proposed that a helix N-capping
motif, identified in the N-terminus of all GPCR-B family
ligands and stabilizing their helical conformation, was prob-
ably formed upon receptor binding and could also constitute
a key element in receptor activation (Neumann et al., 2008).
A large number of site-directed mutagenesis studies sug-
gests that VIP-VPAC, receptor interaction also follows this
paradigm and pointed out that the N-terminus of the VPAC,
receptor plays a key role in agonist binding (Laburthe et al.,
2007). Solano et al. (2001) also found, using reciprocal sub-
stitution mutants in both ligand and receptor, that D* of VIP
forms a salt bridge with R'™ of the VPAC; receptor and that
this interaction was necessary for receptor activation. More
recently, photoaffinity experiments performed by the group
of Couvineau and Laburthe showed that benzophenone-
residues in position 6, 22, 24 and 28 of VIP are in direct
contact with D', G'1¢, C'??> and K'* respectively, four residues
located in the N-terminus of VPAC,; receptor (Couvineau
et al., 2010). Interestingly, they also observed, using a VIP and
a VPAC, antagonist affinity probe in position 0, that the
N-terminal domain of VIP (agonist) and of the VPAC, antago-
nist recognizes two different microdomains in the
N-terminus of the VPAC, receptor, while the central and the
C-terminal regions of these ligands seem to share the same
binding site (Ceraudo et al., 2008a) (Figures 1 and 2).
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Molecular mechanisms involved in
VPAC, receptor activation

As mentioned before, the recent solving of the X-ray crystal
structures of several GPCR-A family members provides clues
to the TM helix rearrangements that result from agonist
binding and subsequent receptor activation. These include
the disruption of an ionic interaction between the cytoplas-
mic face of TM3 (E/DRY motif) and TM6 (E residue) main-
taining the receptor preferentially in a ground inactive
conformation in absence of agonist (ionic lock), a ‘rotamer
toggle switch’ (modulation of the helix conformation around
a proline-kink) in TM6 causing key sequences to be exposed
to cytoplasmic binding partners and a conformational
change of Y residue of the NPXXY motif located in TM7
stabilizing the active conformation (Rosenbaum et al., 2009;
Rosenbaum et al., 2011). In the absence of X-ray crystal struc-
ture of the VPAC, receptor, only model structures have been
reported, which used as template the structures of the
N-terminal domain of the CRF 2 receptor (Ceraudo et al.,
2008b) or structures of family A GPCRs for the TM domains
(Conner et al., 2005; Chugunov et al., 2010). However, the
low sequence identity between the VPAC, receptor sequence
and the templates used for homology modelling prevents
direct transposition of molecular switches that drive GPCR-A
members activation.

As all members of GPCR-B family, VPAC, receptor lacks
the E/DRY sequence. On the basis of subtle changes observed
when Y?* and L?*, located in TM3 of VPAC,, were substituted
with alanine it was proposed that this YL sequence was
equivalent to the E/DRY motif of GPCR-A family (Tams et al.,
2001). Another model based on a three-dimensional analysis
of the GLP-1 receptor proposed that an E/DRY motif could be
formed by three non-adjacent residues consisting in R'7* in
the cytoplasmic end of TM2, E**¢ and Y?* in the distal part of
TM3 of VPAC, (Frimurer and Bywater, 1999). But in our hands
Y?¥A, L?%°A, E?*A, YA and RY*A mutants were undistin-
guishable from the wild-type receptor (Nachtergael et al.,
2006). One possible explanation for the discrepancy can be
the fact that Tams et al. (2000) studied cyclic AMP measure-
ments in intact cells a more sensitive model than the AC
assay on membrane used in our study. Nevertheless, even if
the YL motif of GPCR-B family and E/DRY motif of GPCR-A
family have the same location, they certainly do not have the
same importance for receptor activation (Figure 1).

More recently, by combining pharmacological and in
silico approaches, we have identified a network of interactions
between residues located in helices 2, 3 and 7 of the VPAC,
receptor, which are involved in the stabilization of the recep-
tor in the absence of agonist and in early steps of receptor
activation. We proposed that, in the absence of ligand, inter-
action between R'® N?» and Q%° ties helices 2, 3 and 7
together (Figure 3). Upon VIP binding, the interaction
between R'™ and N**° is broken, and a stronger interaction
(salt bridge) is established between R'® and the D* side chain
of VIP. TM2 and, probably, other helices undergo conforma-
tional changes causing key sequences located in intracellular
loops to be exposed and to interact with the G proteins. In
the meantime, the interaction network involving N** and
Q*° maintains TM7 in a conformation necessary for proper
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Figure 1

Conformational switches in the VPAC1 receptor

Snake plot representation of VPAC; receptor. Amino acid sequence of human VPAC; receptor, the position of signal peptide, glycosylated residues
and amino acids important for VIP binding, receptor activation and G protein coupling are also labelled.
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Figure 2

Amino acid sequence of VIP. Amino acids that were experimentally
mapped into the VPAC; receptor binding site are in bold and those
involved in the helical N-cap are underlined.

activation of G proteins. The three-dimensional model also
suggested that Q*° could function as a floating ‘ferry-boat’,
switching between R and N?** residues’ side-chains, hence
contributing to signal transduction propagation and activa-
tion of G proteins (Chugunov et al., 2010). Likewise, other
studies have pointed out the importance of TM2 and TM7 in
G protein activation. Indeed, the mutation into arginine of
H'7® located at the bottom of TM2 led to a constitutively
activated VPAC, receptor (Gaudin et al., 1998). On the other
hand, it has also been shown that E** located at the junction

of TM7 and the C-terminus of VPAC, was important for
VIP-induced cAMP production but was not directly involved
in Gas binding (Couvineau et al., 2003; Langer and Robbere-
cht, 2005). Moreover, we found that phosphorylation levels
and internalization of N**?A and N**Q VPAC,; receptors
(mutants that failed to generate the G protein active state
and, therefore, to activate AC properly and to stimulate intra-
cellular calcium increase but with a preserved affinity for VIP
and sensitivity to GTP) were comparable with that of the
wild-type receptor (Nachtergael etal., 2006). These later
results thus suggest that receptor conformation necessary for
activation and regulatory mechanisms, such as desensitiza-
tion and internalization, could be different.

When considering other site-directed mutagenesis
studies, it is likely that a complex and larger network of
interaction between TM helices must be considered for stabi-
lization of VPAC; inactive and active conformations
(Figure 1). Indeed, mutation of T**, located at the junction of
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Figure 3

Three-dimensional model of the TM domains of the VPAC; receptor. Lateral (left) and top (right) view of a working model of human VPAC1
receptor, TM and residues identified as important for receptor stabilization are also labelled. Details regarding modelling procedure are described

in Chugunov et al. (2010).

the third intracellular loop and TM6 of VPAC,, into lysine,
proline or alanine also led to a constitutively activated recep-
tor (Gaudin et al., 1999). Another study showed that Y'*¢ and
Y™, located in TM1 of VPAC;, do not interact directly with
VIP but stabilize the correct active receptor conformation
(Perret et al., 2002). Similarly, we observed that K'** and D'
located at junction of TM2 and the first extracellular loop
were essential for VPAC, activation but were not directly
involved in VIP recognition (Langer et al., 2003).

How all these residues cooperate to propagate signal
transduction after VIP binding remains to be elucidated and
would require a model of the activated receptor in complex
with VIP. Particularly the two N-terminal residues of VIP, H'
and S?, are likely to affect, directly or indirectly, the interac-
tion network surrounding N** and Q***. Of interest, so far as
all residues that were identified as important for VPAC, recep-
tor activation are highly conserved among GPCR-B family
members, they may, therefore, be involved in a binding and
activation mechanism that is common to the whole family.

Molecular mechanisms involved
in VPAC,/G protein binding
and activation

The o subunit of heterotrimeric G proteins has a central role
in interaction with both the receptor and the effectors.
Several studies have shown that the C-terminal part of Go
subunit can directly bind to the receptor and is involved in
the coupling specificity (Conklin et al., 1996). The current
model of GPCR activation, based on the study of family A
GPCRs, proposes that when the receptor switches to its active
conformation, TM movements are accompanied by intracel-
lular loops switches leading to exposure of the G protein-
binding pocket to cytosol and efficient binding to G protein.
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However, the diversity of sequences and loop sizes, as well as
their flexibility, has made difficult the identification of a
specific set of residues defining the coupling profile.

For the VPAC, receptor, Ga binding domains are mainly
located in the third intracellular loop (IC3), which contains
subdomains dedicated to the recognition of the different Go
subunits (Figure 1). K**? located in proximal part of IC3 and
E**]ocated at the junction of TM7 and the C-terminal tail are
required for AC activation but not for the coupling to the
inositol trisphosphate/calcium pathway. The former being
involved in direct interaction with Gos (G protein binding),
as demonstrated by a reduced sensitivity to GTP, while E***
triggering switch of Gos from inactive to active state (G
protein activation) (Couvineau et al., 2003; Langer and Rob-
berecht, 2005). Similarly, two other sequences located in IC3
have been identified as important for VIP-induced intracellu-
lar calcium increase but not cAMP production. A small
sequence, [**-R32%- K330-§**1 |ocated in the central part of IC3
is involved in efficient binding of VPAC, to Gai/o and Goq
(Langer et al., 2002), while R** and L**, located at the distal
part of IC3, mediate interaction of VPAC, with Gai/o (Langer
and Robberecht, 2005). Combining mutations in the proxi-
mal and distal part of IC3 together with mutation of E¥** gave
rise to a completely inactive VPAC, receptor with respect to
AC activation and intracellular calcium increase.

Among the different members of the GPCR-B family,
proximal and distal domains of IC3 share conserved
sequences that could therefore represent common G protein
binding motifs. In line with this hypothesis, studies per-
formed on other members of the GPCR-B family identified
the proximal domain of IC3 as essential for AC activation but
the amino acids involved may differ and additional con-
served sequences located in other intracellular regions of the
receptor may also be necessary as seen for glucagon (IC2)
(Cypess etal., 1999) and calcitonin gene-related peptide
receptors (R'*! located in IC1) (Conner et al., 2006). The junc-



tions of IC3 loop are predicted to be a-helical and it is
assumed that the correct positioning of charged amino acids
plays an important role in G protein interaction. However,
other data suggest that lipophilic and aromatic residues are
also important for G protein interaction. It is possible that
IC3 loop junctions activate G protein directly or that they
may serve as regions that control the loop conformation. As
mutations may change both direct interaction site and sec-
ondary structure, it is difficult to define more precisely the
mechanisms involved in IC3 loop/G protein interaction.
Again a structure or a model of the activated VPAC, receptor
in complex with VIP could help to answer this question.

Conclusion

Identification of the precise molecular mechanisms that drive
GPCRs from inactive to active state represents a major focus
in functional genomics and drug development research with
the ultimate aim of designing molecules able to stabilize one
of these states. VIP and PACAP receptors have been identified
as potential therapeutic targets for metabolic, inflammatory
and neuronal diseases (Dickson and Finlayson, 2009). But the
use of their natural ligands is limited by their lack of speci-
ficity (PACAP binds with high affinity VPAC,;, VPAC, and
PAC, receptors while VIP recognizes both VPAC; and VPAC,
receptors), their poor oral bioavailability (VIP and PACAP are
27- to 38-amino acid peptides) and their short half-life.
Therefore, the development of non-peptide small molecules
or specific stabilized peptidic ligands is of high interest. Up to
now, only two small molecules antagonists of VPAC, receptor
have been identified by high-throughput screening (Chu
etal.,, 2010), further investigation and new insight toward
elucidation of VIP receptors activation mechanism would
allow the rational design of potential new drugs.
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